Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Jing Zhang, Ling Ye, Jing-Sheng Yu and Li-Xin Wu*

Key Laboratory for Supramolecular Structure and Materials, Jilin University, Changchun 130012, People's Republic of China

Correspondence e-mail: wulx@jlu.edu.cn

Key indicators

Single-crystal X-ray study
$T=273 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.043$
$w R$ factor $=0.127$
Data-to-parameter ratio $=17.4$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

4,4'-Ethylenebipyridinium tetrachlorocuprate

The crystal structure of the title compound, $\left(\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2}\right)$ $\left[\mathrm{CuCl}_{4}\right]$, consists of $\mathrm{Cu}^{\text {II }}$ complex anions and diprotonated bis(4-pyridyl)ethylene. The cations and anions lie across individual inversion centers. The square-planar $\mathrm{Cu}^{\mathrm{II}}$ complex anions link with cations via $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonding.

Comment

As a part of our ongoing study on organic-inorganic hybrid crystal engineering involving transition metals with azoaromatic molecules, we report here the crystal structure of the title compound, (I).

(I)

The crystal structur of (I) (Fig. 1) consists of $\left[\mathrm{CuCl}_{4}\right]^{2-}$ anions and diprotonated 1,2-bis(4-pyridyl)ethylene cations. The anion and cation lie across individual inversion centers. The $\mathrm{Cu}^{\text {II }}$ atom is coordinated by four Cl^{-}anions in a squareplanar geometry (Table 1). The bis(4-pyridyl)ethylene cations link with the $\mathrm{Cu}^{\text {II }}$ complex anions via $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonding (Table 2). The centroid-to-centroid distance of 3.498 (2) \AA suggests the existence of $\pi-\pi$ stacking between neighboring parallel pyridyl rings (Fig. 2).

Figure 1
The molecular structure of (I), shown with 40% probability displacement ellipsoids (arbitrary spheres for H atoms). [Symmetry codes: (ii) $1-x, 1$ $-y, 1-z$; (iii) $-x, 1-y, 2-z$.]

Received 22 June 2005 Accepted 22 July 2005 Online 27 July 2005

Experimental

Equimolar amounts of bis(4-pyridyl)ethylene and copper acetate were mixed in ethanol, followed by addition of several drops of concentrated HCl solution. Blue single crystals of (I) were obtained from the solution after 5 d .

Crystal data

$\left(\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2}\right)\left[\mathrm{CuCl}_{4}\right]$	$Z=1$
$M_{r}=389.58$	$D_{x}=1.801 \mathrm{Mg} \mathrm{m}^{-3}$
Triclinic, $P \overline{1}$	Mo $K \alpha$ radiation
$a=7.0207(14) \AA$	Cell parameters from 1725
$b=7.0602(11) \AA$	reflections
$c=8.1978(19) \AA$	$\theta=3.1-27.1^{\circ}$
$\alpha=68.66(1)^{\circ}$	$\mu=2.25 \mathrm{~mm}^{-1}$
$\beta=73.748(6)^{\circ}$	$T=273(2) \mathrm{K}$
$\gamma=76.204(11)^{\circ}$	Block, blue
$V=359.10(12) \AA^{3}$	$0.43 \times 0.24 \times 0.23 \mathrm{~mm}$
Data collection	
Rigaku R-AXIS RAPID	
diffractometer	1547 independent reflections
ω scans	1357 reflections with $I>2 \sigma(I)$
Absorption correction: multi-scan	$R_{\text {int }}=0.038$
$(A B S C O R ;$ Higashi, 1995)	$\theta_{\text {max }}=27.2^{\circ}$
$T_{\text {min }}=0.531, T_{\text {max }}=0.603$	$h=0 \rightarrow 9$
3071 measured reflections	$k=-8 \rightarrow 9$
	$l=-9 \rightarrow 10$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043$
$w R\left(F^{2}\right)=0.127$
$S=1.14$
1547 reflections
89 parameters
H -atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.069 P)^{2}\right. \\
& +0.374 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\text {max }}=0.56 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.82 \mathrm{e} \mathrm{~A}^{-3} \\
& \text { Extinction correction: SHELXTL } \\
& \text { Extinction coefficient: } 0.086 \text { (11) }
\end{aligned}
$$

Table 1
Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$.

$\mathrm{Cu} 1-\mathrm{Cl} 1$	$2.2489(10)$	$\mathrm{Cu} 1-\mathrm{Cl} 2$	$2.2701(10)$
$\mathrm{Cl} 1-\mathrm{Cu} 1-\mathrm{Cl} 2$	$89.90(3)$		

Table 2
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{Cl} 1^{\text {iv }}$	0.86	2.48	$3.174(3)$	138
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{Cl} 2^{\text {iv }}$	0.86	2.47	$3.187(3)$	142

[^0]

Figure 2
A packing diagram showing $\pi-\pi$ stacking and hydrogen bonding (dashed lines). [symmetry codes: (i) $-x,-y, 2-z$; (ii) $x,-2+y, z$; (iii) $-x, 1-y$, $2-z$; (iv) $x,-\mathrm{i}+y, z$; (v) $1-x,-y, 1-z$; (vi) $1+x,-2+y,-1+z$; (vii) $-1+x, y, 1+z$; (viii) $x,-2+y, z$; (ix) $1-x, 1-y, 1-z$; (x) $2-x,-1-$ $y,-z$; (xi) $1+x,-1+y,-1+z$.]

H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $\mathrm{N}-\mathrm{H}=0.86 \AA$, and refined in riding mode, with $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}$ (carrier).

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/ MSC, 2002); program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg, 1999) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXTL.

This work is supported by the Natural Science Foundation of China (No. 20473032), the Major State Basic Research Development Program (No. G2000078102), PCSIRT of the Ministry of Education of China, and the Innovation Fund of Jilin University.

References

Brandenburg, K. (1999). DIAMOND. Version 2.1c. Crystal Impact, Postfach 1251, D-53002 Bonn, Germany.
Bruker (2000). SHELXTL. Version 6.14. Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2002). CrystalStructure. Version 3.00. Rigaku/MSC, 9009 New Tails Drive, The Woodlands, TX 77381-5209, USA.

[^0]: Symmetry code: (iv) $x, y-1, z$.

